80 research outputs found

    Day-Ahead Offering Strategy In The Market For Concentrating Solar Power Considering Thermoelectric Decoupling By A Compressed Air Energy Storage

    Get PDF
    Due to limited fossil fuel resources, a growing increase in energy demand and the need to maintain positive environmental effects, concentrating solar power (CSP) plant as a promising technology has driven the world to find new sustainable and competitive methods for energy production. The scheduling capability of a CSP plant equipped with thermal energy storage (TES) surpasses a photovoltaic (PV) unit and augments the sustainability of energy system performance. However, restricting CSP plant application compared to a PV plant due to its high investment is a challenging issue. This paper presents a model to assemble a combined heat and power (CHP) with a CSP plant for enhancing heat utilization and reduce the overall cost of the plant, thus, the CSP benefits proved by researches can be implemented more economically. Moreover, the compressed air energy storage (CAES) is used with a CSP-TES-CHP plant in order that the thermoelectric decoupling of the CHP be facilitated. Therefore, the virtual power plant (VPP) created is a suitable design for large power grids, which can trade heat and electricity in response to the market without restraint by thermoelectric constraint. Furthermore, the day-ahead offering strategy of the VPP is modeled as a mixed integer linear programming (MILP) problem with the goal of maximizing the profit in the market. The simulation results prove the efficiency of the proposed model. The proposed VPP has a 2% increase in profit and a maximum 6% increase in the market electricity price per day compared to the system without CAES

    Anti- Japanese-Encephalitis-Viral Effects of Kaempferol and Daidzin and Their RNA-Binding Characteristics

    Get PDF
    Background: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV) infections. JEV requires an a-1 translational frameshift to synthesize the NS1 ’ protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae) and isoflavonoid daidzin (Dai) against JEV have not been described. Methodology/Principal Findings: The 50 % cytotoxic concentration (CC50) and 50 % effective concentration (EC50) against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC 50 values of Kae and Dai were 12.6 and 25.9 mM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC50 was 21.5 and 40.4 mM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA) was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent Kb value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes wit

    Electrokinetic biocementation of an organic soil

    Get PDF
    Organic soils are a continuing challenge to civil engineers, as they are subject to settlements, negatively impacting on civil engineering infrastructure. To improve the in situ properties of these, chemical soil stabilisers (e.g. cement or lime) can be commonly used. Although successful in minimising severe damage, these stabilisers may have environmental side-effects (e.g. cement and lime production is linked to 7%–8% of overall CO2 emissions). Therefore, the development of innovative, superior, cost-effective and overall more sustainable soil improvement techniques is a field of ongoing research effort. In this context, this paper studies the electrokinetic (EK) biocementation of a problematic soft organic soil of the UK railway network using indigenous ureolytic bacteria. The paper focuses on aspects relevant for the effective implementation of treatments, namely the effect of degree of saturation of the soil and different ways of treatment implementation. The results in terms of unconfined compressive strength and CaCO3 content, proved the feasibility of EK biocementation using an indigenous microorganism, either premixed with the soil or injected electrokinetically. Higher strength gains were recorded for degrees of saturation in the region of 85%–95%. Strength gains and increased CaCO3 contents compared to the control samples were also noted when treatment duration was halved to one week although strengths increased further by 13–17% after a two-week treatment. Overall, the study gives promise for the applicability of the EK-biocementation technique under existing infrastructure. Further optimisation of the treatment variables and refinement of the implementation details could enhance the efficiency of the process

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link

    The oral health of adults in the state of Kuwait

    Full text link
    PLEASE NOTE: This work is protected by copyright. Downloading is restricted to the BU community: please click Download and log in with a valid BU account to access. If you are the author of this work and would like to make it publicly available, please contact [email protected] (D.Sc.D.)--Boston University, Henry M. Goldman School of Graduate Dentistry, 1987 (Dental Care Management)Bibliography : leaves 137-148
    • 

    corecore